
OIOUBL Prices Version 1.3 Side 1

OIOUBL Guideline

OIOUBL Prices

UBL 2.0 Priser

G25

Version 1.3

Copyrights for this release in accordance with Creative Common, Naming 2.5

OIOUBL Guideline

OIOUBL Prices Version 1.3 Side 2

Colophon

Contact:

Danish Agency for Digitisation

E-mail: support@nemhandel.dk

OIOUBL Version 2.02
July 2015
Danish Agency for Digitisation

Landgreven 4
DK-1017 Copenhagen
Phone +45 3392 5200
http://www.digst.dk
digst@digst.dk

Copyrights for this release in accordance with Creative Common, Naming 2.5:

Permission is granted to:

• produce processed works based on this document

• reproduce and make the document available to the public
• use the document for commercial purposes provided that the Danish Agency for Digitisation

be clearly referenced as the source of this release.

Further information about these rights is available at

http://creativecommons.org/licenses/by/2.5/deed.da.

http://creativecommons.org/licenses/by/2.5/deed.da
http://creativecommons.org/licenses/by/2.5/deed.da

OIOUBL Prices Version 1.3 Side 3

Contents

1. Preface ... 4

1.1. Purpose of this document ... 4

1.2. General Points ... 4

1.3. Changes in version 1.3 ... 4

2. Relevant UBL Classes and Elements .. 5

2.1. DK element names and cardinality .. 5

2.1.1. OrderLine/LineItem ... 5

2.1.2. InvoiceLine ... 6

2.1.3. Explanations of the most important elements .. 6

3. Description... 8

3.1. Relationships between Price and Quantity ... 8

3.2. BaseQuantity ... 8

3.3. Delivery Unit .. 10

3.4. Orderable and Invoice unit .. 10

3.4.1. OrderableUnit .. 10

3.4.2. InvoicedQuantity ... 11

3.5. PackSizeNumeric ... 12

3.6. Decimals and roundings .. 12

4. Examples .. 13

4.1. Converting BaseQuantity to InvoicedQuantity.. 13

5. Relevant code lists ... 14

6. Terms and abbreviations ... 14

OIOUBL Prices Version 1.3 Side 4

1. Preface

These guidelines form of a series describing the purpose and use of the business documents that

comprise the Danish localization of UBL 2.0, known as OIOUBL.

As well as guidelines describing the use of commonly used elements, a separate guideline has been

prepared for each business document.

1.1. Purpose of this document

This guideline describes the use of classes and elements that deal with prices and quantities.

In this document special focus is given to:

lements (and how they interrelate) that are central for specifying prices and quantities

How these elements may be used to define different price/quantity relationships

This guideline covers all documents that involve prices and quantities, but it is primarily relevant

for ordering and invoicing related documents.

For further information about catalogue documents, refer to the specific OIOUBL guideline

Catalogue Prices and Quantities (Ref. G40).

1.2. General Points

It should be possible to specify prices and quantities of items in documents in such at way that they

match between orders and invoices. This means that it must be possible to transfer the definitions of

prices and quantities from catalogue documents directly to the order documents, and subsequently

to the invoice/credit note (and other documents).

Note that when prices (PriceAmount) are specified they are always exclusive of VAT.

1.3. Changes in version 1.3

In this latest update of this guideline the following has been changed:

 Questions and answers from FAQ on OIOUBL.info has been incorporated

OIOUBL Prices Version 1.3 Side 5

2. Relevant UBL Classes and Elements

The fields which are relevant for specifying prices and quantities are placed directly under the line

level of the respective documents, for example:

OrderLine

InvoiceLine

On the OrderLine this is primarily relevant for the following classes within the respective LineItem.

Quantity

LineExtensionAmount

Delivery (Quantity)

Price (PriceAmount, BaseQuantity, OrderableUnitFactorRate)

Item (PackQuantity, PackSizeNumeric)

On InvoiceLine it primarily includes the classes

InvoicedQuantity

LineExtensionAmount

Delivery (Quantity)

Item (PackQuantity, PackSizeNumeric)

Price (PriceAmount, BaseQuantity, OrderableUnitFactorRate)

2.1. DK element names and cardinality

The table below lists the elements and their names in Danish, as well as the cardinality.

2.1.1. OrderLine/LineItem

UK-name DK-name Use

Quantity Mængde 1

LineExtensionAmount VareLinjeBeløb 0..1

Delivery / Quantity Levering / Mængde 0..1

Item / PackQuantity Vare / PakkeMængde 0..1

Item / PackSizeNumeric Vare / PakkeStørrelse 0..1

Price / PriceAmount Pris / PrisBeløb 1

Price / BaseQuantity Pris / BeregningsGrundlagMængde 0..1

Price / OrderableUnitFactorRate Pris / OrdreAntalMængdeRate 0..1

OIOUBL Prices Version 1.3 Side 6

2.1.2. InvoiceLine

UK-name DK-name Use

InvoicedQuantity FaktureretMængde 1

LineExtensionAmount LinjeTotal 1

Delivery / Quantity Levering / Mængde 0..1

Price / PriceAmount Pris / PrisBeløb 1

Price / BaseQuantity Pris / BeregningsGrundlagMængde 0..1

Price / OrderableUnitFactorRate Pris / OrdreAntalMængdeRate 0..1

2.1.3. Explanations of the most important elements

The following elements at line level are relevant for prices and quantities:

UK-name DK-name Use Remarks

Quantity Mængde 1 Number of units of the quantity in question.

Quantity@unitCode Unit code for the Quantity.
The value must be a valid unit of measure
code. For example, ”CS” for case.

PackQuantity PakkeMængde 0..1 The packing quantity of the Item. Contains
the number of units as defined in
PackSizeNumeric.
For example, if the packing is a case of 12
pieces., PackQuantity should be ”1”, and
Case should be specified as the unitCode
attribute, as described below.

PackQuantity@unitCode Specifies the unit for PackQuantity.
The value must be a valid unit of measure
code. For example, ”CS” for case.

PackSizeNumeric PakkeStørrelse 0..1 The number of units in one pack of the Item
in question. Using the previous example, this
would be defines as ”12”.

PriceAmount PrisBeløb 1 The net price for the BaseQuantity of the
item.
Use a full stop/period as decimal seperator.

PriceAmount@currencyID The currency that applies to the price,
expressed using a code, such as ”DKK”,
”EUR”, etc.

BaseQuantity BeregningsGrundlagMængde 0..1 The base quantity applicable to the price. For
example, if the price specifed in PriceAmount
is DKK 65.00 for one bottle of wine, then
BaseQuantity should be "1". The unit is
specified in the unitCode attribute, as
described below.*

BaseQuantity@unitCode Specifies the unit code for the BaseQuantity.
The value must be a valid unit of measure
code. For example, ”BO” for bottle

OrderableUnitFactorRate OrdreAntalMængdeRate 0..1 The calculation factor from the Base Unit in
BaseQuantity to the orderable unit in the
Quantity element.*

* Note that BaseQuantity and OrderableUnitFactorRate should be filled out, and that they will be

given a default value if no value is assigned. BaseQuantity is given the default value ”1 EA” (each)

and OrderableUnitFactorRate is given the default value ”1”.

In the Price class you will also find the field PriceTypeCode. By mistake this field is set to

“Bilateral agreed” in the documents OIOUBL Catalogue, Order, OrderChange and OrderResponse.

OIOUBL Prices Version 1.3 Side 7

It should be set to “Used”, meaning that the receiver should read the value.

In a Catalogue the element can be used to specify e.g. a list price (See guide

OIOUBL_GUIDE_CATALOGUE_PRICE (G40) section 4.5). The element is also used to specify

whether a price is inclusive or exclusive taxes (Not VAT). The element must always use the

following code lists: <cbc:PriceTypeCode listAgencyID=”6” listID=”UN/ECE 5387”/>.

Please notice that the element is only used if the OIOUBL default rules for pricing are deviated

from. In OIOUBL the following code list values are relevant: “DR” (list price) and “ABE” (if the

unit price is exclusive the specified non-VAT taxes). See the guide G27 about TAX.

OIOUBL Prices Version 1.3 Side 8

3. Description

In the following section specific classes and elements related to prices and quantities will be

described further.

3.1. Relationships between Price and Quantity

The figure below describes the overall relationship between Price and Quantity classes and their

elements.

Figure 1: The relation between the Price and Quantity classes

The point of distinction is the difference in base units (including the supplier's base units

(BaseQuantity) and base price (Price)). All orderable units and chargeable units are defined based

on their respective base units. These elements and related information are specified in the

OrderLine and InvoiceLine classes together with the information on delivery units from the

Delivery class.

Note that it is also possible to define pack sizes for a given product in the product description.

3.2. BaseQuantity

When calculating prices and quantities, the Price class is the foundation for all other classes and

elements.

The example below shows how the Price class may be specified:

OIOUBL Prices Version 1.3 Side 9

<cac:InvoiceLine>

 <cbc:InvoicedQuantity unitCode="BO">12</cbc:InvoicedQuantity>

 <cbc:LineExtensionTotalAmount currencyID="DKK">720.00</cbc:LineExtensionTotalAmount>

 <cac:Item>

 <cbc:Name>Red wine</cbc:Name>

 <cac:SellersItemIdentification>

 <cbc:ID>1234567</cbc:ID>

 </cac:SellersItemIdentification>

 </cac:Item>

 <cac:Price>

 <cbc:PriceAmount currencyID="DKK">60.00</cbc:PriceAmount>

 <cbc:BaseQuantity unitCode="BO">1</cbc:BaseQuantity>

 <cbc:OrderableUnitFactorRate>1</cbc:OrderableUnitFactorRate>

 </cac:Price>

</cac:InvoiceLine>

Figure 2. Simple price example

The example shows that 12 bottles of wine have been invoice at a total price of DKK 720.00.

It also shows that each bottle has a price of DKK 60.00, and each orderable unit

(OrderableUnitFactorRate) contains exactly 1 bottle.

The PriceAmount and the BaseQuantity express the supplier's base unit. That is, the units that the

supplier maintains his goods in.

The more advanced example in Figure 3. shows that a case of Red wine has been invoiced at a price

of DKK 720.00.

<cac:InvoiceLine>

 <cbc:InvoicedQuantity unitCode="CS">1</cbc:InvoicedQuantity>

 <cbc:LineExtensionTotalAmount currencyID="DKK">720.00</cbc:LineExtensionTotalAmount>

 <cac:Item>

 <cbc:Name>Red wine</cbc:Name>

 <cac:SellersItemIdentification>

 <cbc:ID>1234567</cbc:ID>

 </cac:SellersItemIdentification>

 </cac:Item>

 <cac:Price>

 <cbc:PriceAmount currencyID="DKK">60.00</cbc:PriceAmount>

 <cbc:BaseQuantity unitCode="BO">1</cbc:BaseQuantity>

 <cbc:OrderableUnitFactorRate>12</cbc:OrderableUnitFactorRate>

 </cac:Price>

</cac:InvoiceLine>

Figure 3. Advanced price example

This also shows that each bottle has a price of DKK 60.00, but now each orderable unit

(OrderableUnitFactorRate) is 12 bottles.

OIOUBL Prices Version 1.3 Side 10

This means that while this may be the same item shown in Figure 2, now the OrderableUnit differs

from the BaseQuantity.

3.3. Delivery Unit

The example below shows how the units of delivery information is specified:

<cac:InvoiceLine>

 …

 <cac:Delivery>

 <cbc:Quantity unitCode="CS">1</cbc:Quantity>

 </cac:Delivery>

 …

</cac:InvoiceLine>

Figure 4. Example of a delivery unit

This shows that the Quantity the item is delivered in is cases (CS).

In the Delivery class it is not possible to identify a relation between the BaseQuantity and the

delivered quantity. The details about delivery units (Delivery) are defined in the InvoiceLine class,

and must follow this relationship.

3.4. Orderable and Invoice unit

In the following the order and invoice units are described.

3.4.1. OrderableUnit

Information about ordering items is specified within an OrderLine using the LineItem class, as

shown in the example below:

<cac:OrderLine>

…

 <cac:LineItem>

 <cbc:ID>1</cbc:ID>

 <cbc:Quantity unitCode="CS">1</cbc:Quantity>

 <cbc:LineExtensionAmount currencyID="DKK">720</cbc:LineExtensionAmount>

 <cac:Price>

 <cbc:PriceAmount currencyID="DKK">60.00</cbc:PriceAmount>

 <cbc:BaseQuantity unitCode="BO">1</cbc:BaseQuantity>

 <cbc:OrderableUnitFactorRate>12</cbc:OrderableUnitFactorRate>

 </cac:Price>

 <cac:Item>

 <cbc:Name>Red wine</cbc:Name>

 <cac:SellersItemIdentification>

 <cbc:ID>1234567</cbc:ID>

 </cac:SellersItemIdentification>

 </cac:Item>

OIOUBL Prices Version 1.3 Side 11

 </cac:LineItem>

 …

<cac:OrderLine>

Figure 5. Example of OrderableUnit

The ID uniquely identifies the relevant line item on the Order.

There is a direct relationship between LineExtensionAmount, Quantity, PriceAmount, BaseQuantity,

and OrderableUnitFactorRate.

This can be expressed as:

BaseQuantity * OrderableUnitFactorRate = the quantity specified by Quantity@unitCode

For example, if the BaseQuantity is "1 BO (bottle)", OrderableUnitFactorRate is "12", and the

Quantity@unitCode is "CS", then the order quantity is "1 case of 12 bottles".

The price for the orderable unit is calculated likewise, such that:

PriceAmount / BaseQuantity * (BaseQuantity * OrderableUnitFactorRate) = the price of one

orderable unit.

This expression can be reduced to:

PriceAmount * OrderableUnitFactorRate = the price of one orderable unit.

For example, if PriceAmount is DKK 60.00, BaseQuantity is "1" and OrderableUnitFactorRate

"12", then the LineExtensionAmount is DKK 720.00 for a 12 bottle case (which is the Orderable

Unit).

3.4.2. InvoicedQuantity

A similar logic to that of orderable units applies to invoiced quantities.

<cac:InvoiceLine>

 …

 <cbc:ID>1</cbc:ID>

 <cbc:InvoicedQuantity unitCode="BO">12</cbc:InvoicedQuantity>

 <cbc:LineExtensionAmount currencyID="DKK">720</cbc:LineExtensionAmount>

 <cac:Item>

 <cbc:Name>Red wine</cbc:Name>

 <cac:SellersItemIdentification>

 <cbc:ID>1234567</cbc:ID>

 </cac:SellersItemIdentification>

 </cac:Item>

 <cac:Price>

 <cbc:PriceAmount currencyID="DKK">60.00</cbc:PriceAmount>

 <cbc:BaseQuantity unitCode="BO">1</cbc:BaseQuantity>

 <cbc:OrderableUnitFactorRate>1</cbc:OrderableUnitFactorRate>

 </cac:Price>

 …

<cac:InvoiceLine>

Figure 6. Example of InvoicedQuantity

OIOUBL Prices Version 1.3 Side 12

The ID uniquely identifies the relevant invoice line on the invoice.

In this example the BaseQuantity and the InvoicedQuantity are identical. This means the

LineExtensionAmount is calculated as:

PriceAmount / BaseQuantity * (BaseQuantity * OrderableUnitFactorRate) * InvoicedQuantity

or

DKK 60.00 / 1* (1* 1) * 12 = DKK 720.00

3.5. PackSizeNumeric

Two other elements are related to the specification of units. These are the PackQuantity and the

PackSizeNumeric. Both are specified in the definition of an item.

<cac:Item>

 …

 <cbc:PackQuantity unitCode="CS">1</cbc:PackQuantity>

 <cbc:PackSizeNumeric>12</cbc:PackSizeNumeric>

 …

<cac:Item>

Figure 7: Example of PackQuantity and PackSizeNumeric

The specification for packs is only found within the Item class, but it must be considered in respect

to the other unit specifications. That is, PackQuantity may be an expression of the packing (in the

example, "1 case (CS)"). And PackSizeNumeric specifies how many items comprise the package (in

the example "12").

PackSizeNumeric is related to BaseQuantity, as in the expression:

BaseQuantity * PackSizeNumeric = the quantity expressed by PackQuantity@unitCode.

Where PackQuantity is the quantity that is contained in a pack.

3.6. Decimals and roundings

Notice that there are no limits on the number of decimals on the unit price (Price/PriceAmount), but

on the line extension amount (InvoiceLine/LineExtensionAmount) only 4 decimals are allowed.

To avoid large differences in the amounts it is recommended, that the sender of the document uses

as many decimals as possible on PriceAmount, BaseQuantity and OrderableUnitFactorRate. To

few decimals can cause large differences as in the example below, e.g:

Quantity Price Line total

10000 1.02 10200.00

10000 1.204 10240.00

See the guide on Totals (G28) for more information on decimals and rounding.

OIOUBL Prices Version 1.3 Side 13

4. Examples

This section contains different examples of how to use the price and quantity elements, as well as

the relationship between them.

4.1. Converting BaseQuantity to InvoicedQuantity

In some products and industries the OrderableUnit and the InvoicedQuantity for an item may not be

the same. For example, oil is ordered in barrels but charged per liter, meat is ordered by cut but

charged by weight, and steel is ordered by length measure but also charged by weight.

In the OIOUBL documents it is possible to manage these situations.

The following example show par of an invoice for one barrel of oil (containing 750 litres). These is

the orderable units. However, the supplier's base quantity (for charging) is liters.

<cac:InvoiceLine>

 …

 <cbc:ID>1</cbc:ID>

 <cbc:InvoicedQuantity unitCode="BLL">1</cbc:InvoicedQuantity>

 <cbc:LineExtensionAmount currencyID="DKK">3600.00</cbc:LineExtensionAmount>

 <cac:Item>

 <cbc:Name>Let smøreolie</cbc:Name>

 <cac:SellersItemIdentification>

 <cbc:ID>11223344</cbc:ID>

 </cac:SellersItemIdentification>

 </cac:Item>

 <cac:Price>

 <cbc:PriceAmount currencyID="DKK">4800.00</cbc:PriceAmount>

 <cbc:BaseQuantity unitCode="LTR">1000</cbc:BaseQuantity>

 <cbc:OrderableUnitFactorRate>0.75</cbc:OrderableUnitFactorRate>

 </cac:Price>

 …

<cac:InvoiceLine>

Figure 8: Example of conversion of units

The quantity unit code of "BLL" in InvoicedQuantity specifies that the invoiced quantity is a barrel.

The supplier's base price (PriceAmount) is DKK 4800.00 for kilolitre (the BaseQuantity). Because

the supplier sells the oil in barrels of 750 litres and not kilolitres, the supplier must specify the

conversion factor (OrderableUnitFactorRate) that should be applied to convert the supplier's base

quantity to the unit of 1 barrel. In this case, the OrderableUnitFactorRate is 0.75. (1000 litres *

0.75 = 750 litres ≈ 1 barrel).

The price of one barrel of oil is calculated by multiplying the supplier's base price (PriceAmount)

with the OrderableUnitFactorRate, that is DKK 4800.00 * 0.75 or DKK 3600.00 per barrel.

OIOUBL Prices Version 1.3 Side 14

5. Relevant code lists

Code list: Agency: Urn: Example value:

CurrencyCode 6 ISO 4217 Alpha DKK, EUR

UnitOfMeasureCode 6 UN/ECE rec 20 PK, EA

6. Terms and abbreviations

Listed below are the most important terms and abbreviations:

Term: Explanation:

Document level Elements at document level are found directly under the root element (the top element) in the
XML structure. elements at the document level apply to the whole document.

Line level Elements at line level, unlike elements at the document level, only apply to a specific
transaction line

Class A class is a collection of elements. For example, the Price class contains elements such as
PriceAmount, BaseQuantity, etc.

Element An element is an information entity in an XML structure. For example, the PriceAmount is the
element containing the price in an invoice line.

Attributes In an XML element, it is possible to specify a property as an attribute, e. g. the attribute
unitCode in which the unit for a quantity may be specified, as in the example:
<cbc:BaseQuantity unitCode="BO">1</cbc:BaseQuantity>

